算法简介
插入排序(Insertion-Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2~5。
代码实现
function insertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === "Array") {
console.time("插入排序耗时:");
for (var i = 1; i < array.length; i++) {
var key = array[i];
var j = i - 1;
while (j >= 0 && array[j] > key) {
array[j + 1] = array[j];
j--;
}
array[j + 1] = key;
}
console.timeEnd("插入排序耗时:");
return array;
} else {
return "array is not an Array!";
}
}
改进插入排序
查找插入位置时使用二分查找的方式
function binaryInsertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === "Array") {
console.time("二分插入排序耗时:");
for (var i = 1; i < array.length; i++) {
var key = array[i],
left = 0,
right = i - 1;
while (left <= right) {
var middle = parseInt((left + right) / 2);
if (key < array[middle]) {
right = middle - 1;
} else {
left = middle + 1;
}
}
for (var j = i - 1; j >= left; j--) {
array[j + 1] = array[j];
}
array[left] = key;
}
console.timeEnd("二分插入排序耗时:");
return array;
} else {
return "array is not an Array!";
}
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(binaryInsertionSort(arr)); //[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
算法分析
- 最佳情况:输入数组按升序排列。T(n) = O(n)
- 最坏情况:输入数组按降序排列。T(n) = O(n2)
- 平均情况:T(n) = O(n2)