如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例 1:
输入: [“MedianFinder”,“addNum”,“addNum”,“findMedian”,“addNum”,“findMedian”] [[],[1],[2],[],[3],[]] 输出:[null,null,null,1.50000,null,2.00000]
示例 2:
输入: [“MedianFinder”,“addNum”,“findMedian”,“addNum”,“findMedian”] [[],[2],[],[3],[]] 输出:[null,null,2.00000,null,2.50000]
限制:
- 最多会对
addNum、findMedian
进行50000
次调用。
/**
* initialize your data structure here.
*/
var MedianFinder = function () {};
/**
* @param {number} num
* @return {void}
*/
MedianFinder.prototype.addNum = function (num) {};
/**
* @return {number}
*/
MedianFinder.prototype.findMedian = function () {};
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
解法 1:暴力法
每次取出中位数的时候,都先将所有元素进行排序,然后再计算中位数。代码如下:
var MedianFinder = function () {
this.data = [];
};
MedianFinder.prototype.addNum = function (num) {
this.data.push(num);
};
MedianFinder.prototype.findMedian = function () {
const length = this.data.length;
if (!length) {
return null;
}
this.data.sort((a, b) => a - b);
const mid = Math.floor((length - 1) / 2);
if (length % 2) {
return this.data[mid];
}
return (this.data[mid] + this.data[mid + 1]) / 2;
};
也可以在添加元素的时候直接排序。时间复杂度一样,均是 O(NlogN),无法 ac。
解法 2: 二分查找
其实不需要每次添加元素的时候,都对全部元素重新排序。如果之前一直保证元素是有序的,那么添加新元素的时候,只需要将元素插入到正确位置即可,查找正确位置可以通过「二分搜索」来完成。
为了保证之前的元素有序,针对每个新添加的元素都将其放入正确位置。
代码实现如下:
var MedianFinder = function () {
this.data = [];
};
MedianFinder.prototype.addNum = function (num) {
if (!this.data.length) {
this.data.push(num);
return;
}
let left = 0,
right = this.data.length - 1;
while (left <= right) {
let mid = Math.floor((left + right) / 2);
if (this.data[mid] === num) {
this.data.splice(mid, 0, num);
return;
} else if (this.data[mid] < num) {
left = mid + 1;
} else {
right = mid - 1;
}
}
this.data.splice(right + 1, 0, num);
};
MedianFinder.prototype.findMedian = function () {
const length = this.data.length;
if (!length) {
return null;
}
const mid = Math.floor((length - 1) / 2);
if (length % 2) {
return this.data[mid];
}
return (this.data[mid] + this.data[mid + 1]) / 2;
};
二分查找需要O(logN)的复杂度,移动元素需要O(N)复杂度,所以时间复杂度是O(N)。
解法 3: 最大堆 + 最小堆
对于这种动态数据,堆是极好的解决方案。准备两个堆:
- 最大堆:存放数据流中较小的一半元素
- 最小堆:存放数据流中较大的一半元素
需要保证这 2 个堆的“平衡”。这里的平衡指得是:最大堆的大小 = 最小堆的大小, 或者 最大堆的大小 = 最小堆的大小 + 1。
当调用 findMedian 查询中位数的时候,中位数就是最大堆的堆顶元素,或者 (最大堆的堆顶元素 + 最小堆的堆顶元素)/2
剩下的问题就是怎么保证堆的平衡?步骤如下:
- 先让 num 入 maxHeap
- 取出 maxHeap 的堆顶元素,放入 minHeap
- 若此时
最大堆的大小 < 最小堆的大小
,取出 minHeap 的堆顶元素,让入 maxHeap
由于 JavaScript 中没有堆,所以要自己实现。在实现的时候,堆的代码其实只需要一份,堆中进行判定的比较函数由外界传入即可。
const defaultCmp = (x, y) => x > y; // 默认是最大堆
const swap = (arr, i, j) => ([arr[i], arr[j]] = [arr[j], arr[i]]);
class Heap {
/**
* 默认是最大堆
* @param {Function} cmp
*/
constructor(cmp = defaultCmp) {
this.container = [];
this.cmp = cmp;
}
insert(data) {
const { container, cmp } = this;
container.push(data);
let index = container.length - 1;
while (index) {
let parent = Math.floor((index - 1) / 2);
if (!cmp(container[index], container[parent])) {
return;
}
swap(container, index, parent);
index = parent;
}
}
extract() {
const { container, cmp } = this;
if (!container.length) {
return null;
}
swap(container, 0, container.length - 1);
const res = container.pop();
const length = container.length;
let index = 0,
exchange = index * 2 + 1;
while (exchange < length) {
// // 以最大堆的情况来说:如果有右节点,并且右节点的值大于左节点的值
let right = index * 2 + 2;
if (right < length && cmp(container[right], container[exchange])) {
exchange = right;
}
if (!cmp(container[exchange], container[index])) {
break;
}
swap(container, exchange, index);
index = exchange;
exchange = index * 2 + 1;
}
return res;
}
top() {
if (this.container.length) return this.container[0];
return null;
}
}
整体的代码逻辑如下:
var MedianFinder = function () {
this.maxHeap = new Heap();
this.minHeap = new Heap((x, y) => x < y);
};
MedianFinder.prototype.addNum = function (num) {
this.maxHeap.insert(num);
this.minHeap.insert(this.maxHeap.top());
this.maxHeap.extract();
if (this.maxHeap.container.length < this.minHeap.container.length) {
this.maxHeap.insert(this.minHeap.top());
this.minHeap.extract();
}
};
MedianFinder.prototype.findMedian = function () {
return this.maxHeap.container.length > this.minHeap.container.length
? this.maxHeap.top()
: (this.maxHeap.top() + this.minHeap.top()) / 2;
};
时间复杂度是O(logN),空间复杂度是O(N)。